
E
le

k
tr

o
-A

u
to

m
a
ti

k

Doc ID: PG2EN
Revision: 8
Date: 06-23-2020

PS 2000 B Series
2020 TFT models

Programming Guide

Attention! This document is
only valid for the 2020 facelifted
models of PS 2000 B with color
TFT screen

Page 2EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

TABLE OF CONTENTS
1. PREAMBLE 3

1.1 Introduction... 3
1.2 Driver installation .. 3

1.2.1 Windows .. 3
1.2.2 Linux, MacOS and others .. 3

1.3 Terms.. 4

2. COMMUNICATION WITH THE DEVICE IN GENERAL 4
2.1 Structure of the communication.. 4
2.2 Serial communication parameters .. 4
2.3 Translating values .. 4

2.3.1 Actual values ... 4
2.3.2 Set values ... 4

2.4 General... 5
2.5	 Effective	resolution	when	programming ... 5

3. MESSAGE FORMATS 6
3.1 Custom binary format ... 6

3.1.1 Telegram structure .. 6
3.1.2 The start delimiter in detail .. 7
3.1.3 The mask byte on object 54 .. 7
3.1.4 Message examples ... 7
3.1.5 Possible problems when setting device conditions ... 8
3.1.6 Error messages ... 8
3.1.7 Trouble-shooting ... 9
3.1.8 Object list .. 9

3.2 ModBus RTU .. 10
3.2.1 Preamble ... 10
3.2.2 General information about ModBus RTU .. 10
3.2.3 About the register list .. 10
3.2.4 Message types .. 11
3.2.5 Functions ... 11
3.2.6 Control messages (write) .. 11
3.2.7 Query message ... 12
3.2.8 Response message (read) .. 12
3.2.9 The ModBus checksum ... 13
3.2.10 Communication errors ... 13
3.2.11 Examples of ModBus RTU messages .. 14

3.3 SCPI ... 16
3.3.1 Format of set values and actual values... 16
3.3.2 Syntax ... 16
3.3.3 Concatenated commands ... 16
3.3.4 Upper and lower case ... 16
3.3.5 Long form and short form .. 16
3.3.6 Termination character .. 17
3.3.7 Communication errors ... 17
3.3.8 Standard IEEE commands .. 17
3.3.9 Status registers ... 18
3.3.10 Output addressing ... 19
3.3.11 Set value commands ... 20
3.3.12 Measuring commands ... 20
3.3.13 Status commands ... 20
3.3.14 Commands for protective features .. 21
3.3.15 Commands for adjustment limits ... 21
3.3.16 Commands for the tracking mode ... 22
3.3.17 Further commands .. 22

Page 3EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

1. Preamble
1.1 Introduction
This guide’s purpose is to explain the communication protocols for the 2020 redesigned generation of series PS
2000	B	models.	These	devices	support	three	different	message	formats	or	command	syntax:
•	Custom binary EA message format (same as in the previous PS 2000 B model generation)
•	SCPI
•	ModBus RTU

The	device	can	distinguish	the	three	different	protocols	automatically	upon	the	first	byte	of	a	message.	This	is	
possible because of some rules:
•	The slave address in byte 0 of ModBus message must always be either 0x00 or 0x01, though it’s not used to
address	the	device	->	when	the	first	byte	is	either	0	or	1	the	message	is	considered	and	processed	as	ModBus	
RTU message

•	When using the binary protocol, the 2nd byte of the message can only be 0x00 or 0x01 in order to address the
output 1 or output 2 (for a single model it would thus always be 0x00) -> if the 2nd byte is either 0x00 or 0x01,
the message is considered and processed as custom binary message

•	When	the	first	byte	contains	a	value	>1	and	the	2nd	byte	as	well,	the	message	is	considered	and	processed	as	
SCPI command string

•	Any other case is considered as an invalid message
Communication is solely done with the front USB as it the only digital interface. Once installed, the USB driver cre-
ates a virtual COM port (VCP) for any new unit of this device type. Using the COM port will reduce the programming
effort	for	the	communication	port	itself	to	a	minimum,	because	the	virtual	COM	port	doesn’t	require	configuration.

1.2 Driver installation

1.2.1 Windows
The	USB	driver	comes	on	USB	stick	with	the	device.	In	case	the	stick	isn’t	available,	you	can	find	the	driver	on	our	
website as well. It’s compatible to all Windows versions since 7 (except for Embedded).
We	recommend	to	install	the	driver	before	connecting	the	device	to	the	PC	the	first	time,	in	order	to	prevent	Windows	
from	installing	another	driver	which	wouldn’t	configure	the	device	as	PS	2000	in	the	system.	This	can	become	a	
problem	when	starting	to	use	LabView	and	our	supplied	VI	set	which	requires	the	device	to	be	correctly	named	
according to our driver.
After successful installation you can safely connect the device to the PC. In order to verify correct device installation
it’s	helpful	to	open	the	Windows	Device	Manager	(on	Windows	10	you	find	in	the	context	menu	when	right-clicking	
the	start	menu	button).	Go	to	section	“Ports”	to	find	a

 or PS 2000 Triple (COM8), depending on the model.
Note: The COM port number 8 above is only an example. Windows assigns a new COM port for every new device
of this type that is installed in the system. The port is remembered and used again if the device is connected the
next time.
Note: In case there are multiple units connected to the PC, they will all be listed as separate devices in the device
manager.

1.2.2 Linux, MacOS and others
We	can’t	offer	a	proprietary	driver	for	operating	systems	other	than	Windows.	There	are	generic	drivers	on	at	least	
Linux and MacOS available. In case the automatic detection fails, the USB hardware is of type CDC (communica-
tion device class).
However, the generic driver has a downside: our LabView VI package can’t be used or at least the scan VI, which
is	used	to	find	and	list	our	devices,	because	it	relies	on	data	coming	from	the	Window	registry.

Page 4EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
1.3 Terms
Telegram or Message or Message format = Chain of hexadecimal bytes, with varying length. It’s either sent to
a	device	or	received	from	it.	A	part	of	the	telegram	(data	field)	represents	hexadecimal	values	or	ASCII	strings.
SCPI = Standard Commands for Programmable Instruments, an internationally standardized text/string based
command language
ModBus / ModBus RTU	=	binary,	prolific	and	specified	data	transmission	format	which	is	based	on	sub	formats	
like RTU

2. Communication with the device in general
2.1 Structure of the communication
The communication with the unit is based on these telegram types:
a) Send message: an object or command is sent which shall, for instance, set the output voltage. As long as this
action is permitted by the current state of the device, the command is accepted and executed. Depending on the
message format used in the last transmission, the device would do following:
•	when using the custom binary message format, it would send an answer in form of an error message, but with

error code 0. Otherwise, an error code other than 0 is returned.
•	when	using	ModBus	it	would	return	an	acknowledge	message	(different	formats,	depending	on	the	function	code)
•	when using SCPI it won’t return anything

b) Query message:	a	query	is	sent	to	the	device	and	an	answer	is	expected,	which	would	contain	the	requested	
data. In case of a communication error the device would either return an error message (custom binary / ModBus)
or nothing (SCPI).

2.2 Serial communication parameters
Data transfer is done via a virtual COM port (VCP), which is generated by the USB driver. Since the COM port is
virtual, the driver ignores the actual serial setting, so any setting is OK, also the default one. It means, depending
on	the	IDE	in	use,	it	may	not	even	be	required	to	configure	the	serial	settings.

2.3 Translating values
Two	of	the	above	listed	message	formats,	the	custom	binary	and	ModBus,	require	to	translate	set	values	and	
actual values as percentage values for transmission. A value of 0x6400 (custom binary) or 0xCCCC (ModBus)
corresponds	to	100.00%.	The	different	hex	value	for	100%	with	ModBus	comes	from	the	requirement	of	compat-
ibility to our software and other series which also use ModBus.

2.3.1 Actual values
An	actual	value	is	queried	and	read	from	the	device	and	will	be	returned	as	hexadecimal	16	bit	value,	represent-
ing a per cent value.

Real actual value = Rated value * Per cent act. value ►
Translation factors
Custom binary format: 26500 or 0x6400
ModBus: 52428 orr 0xCCCC

Translation factor

Example: The rated voltage of the device is 42 V, the percentage actual value came as 0x2454 = 9300. When
translating it from ModBus format it results in an actual value of 42 * 9300 / 25600 = 7.45 V.

2.3.2 Set values
Set values have to be translated into 16 bit per cent values before transmission. Reading set values back from the
device	requires	to	translate	them	vice	versa.

Percentage set value = Translation factor * Real set value ►
Translation factors
Custom binary format: 26500 or 0x6400
ModBus: 52428 orr 0xCCCC

Rated value

Example: the set value of current shall be 13.5 A, the rated current of the device is 20 A. With the formula it results
in a per cent value of 25600 * 13.5 / 20 = 17280= 0x4380, when translating it for the custom binary message format.
After sending 0x4380 to the 20 A model, it should set a current of 13.5 A for the addressed output.

Page 5EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
2.4 General
Basic rules:
•	Monitoring,	i.e.	only	querying	actual	values	and	status,	is	always	possible.	The	device	doesn‘t	require	to	be	in	

remote mode in this case
•	Setting	of	status	and	set	values	(controlling)	requires	the	activation	of	remote	control	mode
•	With the triple models, outputs 1 and 2 are remotely controllable and have to be addressed separately, except

for when tracking mode is activated where it’s only possible to address output 1 which is followed by output 2

In order to start controlling a device you need to
1. always activate the remote mode first (object 54)
2. and then you can send set values or status.
Remote control should be left if not used any further. As long as it’s active, the device or the addressed output can’t
be operated manually. The mode is indicated on the front display.

2.5 Effective resolution when programming
All values related to voltage and current, as they can be transferred to the device and which are transferred via
the	power	stages	to	the	addressed	DC	output	have	the	same	defined	programmable	resolution	and	an	effective	
resolution. The same applies to the actual which are sampled from the DC output using simple measuring circuits.
“Simple” means that the device can’t be considered as and compared to a multimeter, which measures faster and
more precise.
Overview:

Message format Programmable resolution of set values Effective resolution
Custom binary format 0 - 0x6400 = 25600 25600 steps
ModBus 0 - 0xCCCC = 52428 25600 steps

SCPI
Theoretically	infinite,	but	the	number	of	effec-
tive decimal places is identical to the format of
the corresponding value on the display

Model depending, e. g. 5 A = 500 steps,
because a 5 A rated model would display
it as 5.00

Message format Achievable resolution of actual values
Custom binary format ≤1024
ModBus ≤1024
SCPI Model depending, e. g. 5 A = 500 steps (see above)

The effective resolution depends on the analog-digital converters used in the hardware. They determine the
achievable step width of set values on the DC output. It calculates as step width of voltage or current = rated value
÷ effective	resolution.	For	instance,	with	model	PS	2384-05	B	the	approximate	step	width	of	a	voltage	set	value	
set	with	ModBus	could	then	be	84	V	/	25600	=		≈	3	mV.	For	the	current	it	would	be	50	A	/	25600	=	≈	0.2	mA.	Actual	
values	have	a	significantly	lower	resolution.
However, tolerances add to the result when setting a value, shifting the actual result. The PS 2384-05 B from the
example above has a voltage tolerance of max. 0.2%, as stated in the user manual. This is up to 168 mV. When
setting, for example, 24 V the true output voltage is allowed to be within 23.83 V and 24.17 V. The actual value, as
readable from the device, already includes this tolerance (or error). If you would measure the actual output voltage
with an external multimeter and it would probably read 24.1 V and you would want to it have closer to the desired
24 V, the software could adjust the set value in approx. 3 mV steps to further narrow the actual value to the set value.

Page 6EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

3. Message formats
3.1 Custom binary format

3.1.1 Telegram structure
The telegram consists of a variable number of bytes of this structure:

Byte 0 Byte 1 Byte 2 Variable number of bytes 2 bytes
SD DN OBJ DATA CS

Byte 0: SD (start delimiter)
The	start	delimiter	marks	the	beginning	of	the	telegram	and	determines	if	the	message	is	a	query	or	not.	Meaning	
of the bits:
Bits 3-0: Number of bytes -1 in the DATA	field	of	the	telegram	(bytes	3-18),	which	can	be	up	to	16	Bytes	when	
writing	or	reading.	The	length	is	primarily	used	for	query	messages	to	define	the	number	of	bytes	to	return.	The	
maximum of 16 would then result in the nibble value 0xF in bits 3-0. When only writing, it tells the device the length
of DATA so it can determine and check the expected length of the entire message. The maximum data length of
a	specific	object	is	given	in	column	6	of	the	communication	object	list.
Bit 4: Direction
0= Telegram from device to control unit
1= Telegram from control unit to device

Bit 5
1=	Must	always	be	1	for	sending/querying	to	the	device,	though	in	answers	from	the	device	it	will	be	0

Bits 6+7: Transmission type
00 = Reserved
01 = Query data (PC->device)
10	=	Answer	to	a	query	(device->PC)
11 = Send data (PC->device)

Byte 1: DN (device node)
Here we need to distinguish whether a Single or Triple model of PS 2000 B series is going to be controlled. This
value	is	used	to	address	a	specific	DC	output.	While	Single	models	only	have	one	output	(Output	1),	there	are	two	
outputs to address with Triple models, Output 1 (left-hand display) and Output 2 (right-hand display). Output 3 can’t
be remotely controlled. The DN is returned 1:1 in an answer message, in order to know from which output it came.
Rules:
Output 1: DN must be 0 (Single or Triple model)
Output 2: DN must be 1 (only with Triple models)
In regard to the automatic distinction between the three supported message formats, it has to be pointed out that
the byte DN must always only be 0 or 1 in order to correctly detect the message as “custom binary format”, apart
from	the	correctly	addressing	a	specific	output.

Byte 2: OBJ
The communication object number is given here. Refer to the communication object list for PS 2000 B series to
find	the	available	objects,	their	object	number	and	function.	See	section	3.1.8.

Bytes 3 - 18: DATA
The DATA	field	can	be	0-16	bytes	long,	hence	the	length	of	the	telegram	varies.	If	a	query	is	sent	to	the	device,	
the	data	field	isn’t	used	and	the	checksum	of	the	telegram	directly	follows	after	byte	2.	Data	are	only	transmitted	
when sending something to the device or when receiving an answer from it.

Last two bytes: CS (check sum)
The check sum is always located at the end of the telegram. It’s built by the simple addition of all preceding bytes
of the telegram. It’s two bytes long. The high byte is placed before the low byte.

Page 7EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.1.2 The start delimiter in detail
According	to	the	telegram	format	(see	above),	the	first	byte	of	a	telegram	is	the	start	delimiter,	which	depends	on	
the type and direction of the telegram. For example, the SD can be 0xF1 and looks like this in single bits:
11 11 00 01

Bits 3...0: 0001 = Two bytes are sent

Bit 4: 1 = Direction from PC

Bit 5: 1 = Always 1 when sending to the power supply)

Bits 7+6: 11 = Mode “Send data”

This	SD	determines	that	data	are	sent	to	the	device.	The	content	of	the	data	and	the	object	define		what	is	sent	
and what the device will do in reaction.
Alternatively	to	the	bitwise	assembly,	this	can	be	simplified	by	adding	hex	values:
SD = Message type + Cast type + Direction + Length
whereas the message type is either
0xC0 Send data or
0x40 Query data
0x80 Answer from device
and the cast type is
0x20 Broadcast
and the direction is either
0x10 from PC to the device or
0x00 from device to the PC
and the data length - 1 can be
0x01...0x0F up to 16 bytes of data
By the above example, the SD of 0xF1 is built from 0xC0 + 0x20 + 0x10 + 0x01.
The	SD	in	answers	from	the	device	will	be	different	and	can	be	ignored	or	at	least	used	to	read	the	data	length	from	it.

3.1.3 The mask byte on object 54
Object	54	requires	to	use	a	mask	byte,	which	is	sent	together	with	the	control	byte.	The	possible	mask	values	are	
given	in	column	6	of	the	object	list	(see	separate	PDF	file).	The	bits	of	the	control	byte	have	various	functions,	so	it	
has	to	be	determined	which	bit	is	going	to	be	changed.	This	is	defined	by	the	mask	with	a	1	for	the	corresponding	
bit of the control byte.
Example: bit 0 of the control byte shall be changed to 0 or 1. This will result in the control byte being either 0x00
or 0x01 and the mask being 0x01. Also see the object list at object 54.

Though the mask bytes allows to change multiple bits at once, it’s strongly recommended to
only change one bit per message in order to avoid conflicts.

3.1.4 Message examples
Note:	the	below	listed	hex	values	are	in	simplified	form,	without	the	usually	leading	0x.

Example 1:	The	actual	values	shall	be	queried	from	the	device.	According	to	the	object	list,	this	can	be	done	with	
object	71.	The	telegram	to	query	the	actual	values	has	to	look	like	this,	according	to	the	above	explained	telegram	
structure and construction of the start delimiter:
75 00 47 00 BC for a Single model or output 1 of a triple model or
75 01 47 00 BD for Output 2 of a triple model
The answer from the device could be like this (single model or output 1 of a triple model):
85 00 47 01 01 64 00 1E 00 01 50 (1

This will translate to 42 V (green value = actual voltage) and 1.8 A (blue value = actual current) for a PS 2042-
06B with 42 V rated voltage and 6 A rated current. The status is returned as 0x0101 (pink value) and translates to
“remote control on”, “DC output on” and “regulation mode CV”.

1) For the decoding of the bytes see the object list, object 71

Page 8EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
Example 2: Activate remote control. This can only be done when the addressed output and its dedicated display
isn’t menu mode or when Output 2 of a Triple model is going to be addressed, tracking mode can’t be active.
F1 00 36 10 10 01 47 for a Single model or output 1 of a triple model or
F1 01 36 10 10 01 48 for Output 2 of a triple model
A successful execution of the command is responded by either
80 00 FF 00 01 7F for a Single model or output 1 of a triple model or
80 01 FF 00 01 80 for Output 2 of a triple model, containing error code 0x00, which means “OK”.
In case the command can not be executed, the error code would change:
80 00 FF 05 01 80 returned error 0x05 (“Wrong device node”), which means it was tried to address Output 2 on
Single model.

Hex values must be transferred as binary bytes, not as ASCII string!

3.1.5 Possible problems when setting device conditions
Object 54 is used to either activate/deactivate remote control operation or switch the addressed output of a device
on	or	off.	The	object	can	be	used	to	activate	both	states	at	once,	but it’s strongly not recommended to do so, be-
cause	setting	the	output	requires	remote	control	already	being	active	and	else	would	generate	an	error	message.	
The	best	way	is	to	activate	remote	control	first,	via	the	corresponding	bit	the	control	byte,	and	then	control	the	
DC	output	by	sending	object	54	a	second	time	with	a	different	control	byte	and	mask.	When	deactivating	remote	
control it goes vice versa.
It’s also useful to read the state of the device with object 70, in order to check if object 54 has been set correctly.

3.1.6 Error messages
When sending values or conditions, the device will return an acknowledging message in form of an error message
using object number 0xFF and containing error code 0. This indicates that the last command was received and
executed correctly. Otherwise, if the device can’t execute the last command for some reason or the telegram was
bad, an error message containing an error code other than 0 is returned. Error code list:

Hex. Dec.
00 0 No error
03 3 Check sum incorrect
04 4 Start delimiter incorrect
05 5 Wrong address for output
07 7 Object not defined
08 8 Object length incorrect
09 9 Read/Write permissions violated, no access
0F 15 Device is in "Lock" state
30 48 Upper limit of object exceeded
31 49 Lower limit of object exceeded

Legend
Communication error
User error

Description
Error code

Example: if you try to set the output voltage with object 50 while the device isn’t in remote control, it would return
the error message 80 00 FF 09 01 88. The error code 0x09 indicates, that the device is in a state where it’s not
able to accept object 50.
Explanation of some error codes:
Code 0x7: the object number used in the telegram is unknown to the device. Note, that the object numbers are
not	subsequent.
Code 0x8:	the	length	of	the	data	field	in	the	telegram	is	defined	in	the	object	list.	This	error	code	will	be	returned	if	
a	set	value,	which	is	always	2	bytes	because	of	type	„int“,	should	have	been	sent	but	the	data	field	only	contained	
one byte. Even if the start delimiter contained the correct telegram length. This is a protection against setting
wrong values.
Code 0x9: additionally to the above example, this error code can also mean that there was an attempt to write to
an object which is, according to the object list, read only (ro).
Code 0xF: there was an attempt to switch the addressed output to remote control while the related display was
in menu mode.

Page 9EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.1.7 Trouble-shooting
Possible problem:	Multiple	queries	have	been	sent,	but	not	all	of	them	have	been	answered
Most likely cause:	The	queries	have	been	sent	too	quickly	after	each	other.	Depending	on	the	not	exactly	defined		
execution time of commands, you need to include a certain latency between two transmissions. The minimum time
between two commands is recommended as at least 50 ms for a device of PS 2000 B series.

Possible problem: Set values and status are not set
Possible causes
•	The device or addressed output isn’t in remote control mode. Should result in error code 0x09.
•	A value sent to the (addressed) output is wrong (too high, too low). Then an error message would be returned.

Or the value is accepted, but can’t be transferred to the output because of the current device condition, like
when sending a voltage set value while the device is in current limitation. In this case it wouldn’t return an error.

3.1.8 Object list
See	separate	PDF	file	named	object_list_ps2000b_de_en.pdf.

Page 10EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.2 ModBus RTU

3.2.1 Preamble
Important! Read this for further understanding:

This series has been update in 2020 to support the ModBus RTU message format for the first
time. Despite ModBus having a specification, our devices didn’t fully comply to that specification
in the past. In the beginning of 2020 all series supporting ModBus thus received an update due
to which the compliance to the specification can be switched between limited and full, whereas
“limited” represents the former way of our implementation and in order to keep a certain com-
patibility to earlier firmware releases, the limited compliance mode is the default setting after
production or after a factory reset. It means that when starting using ModBus with a PS 2000 B
device it’s required to activate the full compliance at least once. It will be stored.
This system also has been submitted to the PS 2000 B, to have it compatible to other series.
The compliance can be switched (register 10013) between “Full” and “Limited” (default). Dif-
ferences:

• “Full” only supports the slave ID / address 1 and returns READ COILS functions correctly
• “Limited” only supports slave ID / address 0, so activating mode “Full” requires to send the

message to address 0 and it would always return 16 coils to a READ COILS query

From here on it’s assumed that the device you are going to program is set to mode “Full”.

3.2.2 General information about ModBus RTU
A	message	or	telegram	as	defined	by	the	ModBus	RTU	protocol	consists	of	hexadecimal	bytes,	of	which	the	first	
byte, the so-called slave ID, must always be 1 because our devices don’t need an adjustable address and so it’s
defined	to	be	1.	Reason:	The	first	byte	of	a	telegram	is	also	used	to	detect	the	message	format	of	the	telegram.	
Also see „3. Message formats“ about this topic.
Format	and	length	of	a	telegram	are	defined	as	detailed	below.	

3.2.3 About the register list
Along	with	this	programming	guide,	there	is	a	so-called	register	list	included	as	PDF	file.	This	list	gives	an	overview	
about the remote programming features that are available for a PS 2000 B device when accessing it with ModBus.
The list explains in compact format how the data in a binary ModBus message has to be interpreted or how a register
is	specified.	This	will	help	the	user	to	implement	the	device	communication	into	custom	software	applications.	Us-
ers who decide to work with SCPI command language usually don’t need this list. Later in this document, the SCPI
commands are referenced in a separate chapter. When using the custom binary format, however, there is a separate
list, the PS 2000 B object list.

3.2.3.1 Columns “ModBus address”
This number, given in decimal and hexadecimal form, is the so-called ModBus register address or register number.
It’s used in hexadecimal form in ModBus messages.

3.2.3.2 Columns “Function”
The heads of the 5 columns next to the ModBus address column contain the names and codes of the supported
ModBus functions. An “x” in these columns mark the assignment of a register to any of the functions. For example,
the so-called coil registers are usually writable and readable, so they’re assigned to functions “Read Coils (0x01)”
and “Write Single Coil (0x05)”.

3.2.3.3 Column “Data type”

Data type Length
char 1 Byte Single byte, used for strings
uint(16) 2 Bytes Double byte, also called word or unsigned 16bit integer
uint(32) 4 Bytes Double word, also called long or unsigned 32bit integer
float 4 Bytes Floating point value according to IEEE745 standard

Page 11EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.2.3.4 Column “Access”
This	column	defines	for	every	register	whether	the	access	is	read	only,	write	only	or	read/write.
R = Register is read only
W = Register is write only or wouldn’t return a reasonable value when read from
RW = Register can be read or written

It applies generally: Writing to a register which allows write) access (W, RW) is only possible
during remote control!

3.2.3.5 Column “Number of registers”
With ModBus, a register always has a length of 2 bytes or a multiple of 2 bytes. This column tells how many 2-byte
values are used by the register. The value is always the half of the value in column “Data length in bytes”.

3.2.3.6 Column “Data”
This column tells additional information about the data which can be written to or read from the register. Two, four
or	more	bytes	can	be	interpreted	in	different	ways,	depending	on	data	type.

3.2.4 Message types
Basically, the message system distinguishes between query messages, control messages and response mes-
sages. Query messages will cause the device to send a response message, while control messages only cause
it	to	reply	with	a	1:1	echo,	in	order	to	confirm	reception.

3.2.5 Functions
The second byte of a message contains a ModBus function code (FC, marked in blue below), which determines
whether the message is a READ or WRITE message. It also determines, whether one or multiple registers are
accessed. The protocol as described below supports following ModBus functions :

Function Function name Description Example of use
Hex Dec Long Short
0x01 1 READ COILS RC Only allows to read 1 coil, because the coils

are not organized incrementally.
Query the input / output
condition

0x03 3 READ HOLDING
REGISTERS

RHR Used	to	read	n	subsequent	registers.	Results	
in n*2 bytes of data in the response message.

Read the model name
string (1-40 bytes)

0x05 5 WRITE SINGLE
COIL

WSC Used to write the coil (TRUE/FALSE) of a
boolean register

Switch device to remote
control.

0x06 6 WRITE SINGLE
REGISTER

WSR Used to write one register. Set values (U, I, P etc.)

0x10 16 WRITE MULTIPLE
REGISTERS

WMR Used	 to	write	n	subsequent	 registers.	Can’t	
be used to write beyond the limits of a register
block, for example when trying to write multiple
set values (U, I, P) at once.

Write multiple values at
once within a register
block or write the so-
called user text

3.2.6 Control messages (write)
The protocol checks the message only regarding the max. length of the register. After the data part, the checksum
is expected. So in case the data part would only contain the minimum two bytes and thus the message would
fulfil	the	protocol	requirements	for	the	selected	function	code,	the	checksum	would	be	expected	at	the	position	
of	the	7th	byte.	If	there	were	further	data	bytes	at	that	position	or	zeros	and	the	checksum	would	be	at	a	different	
position in the message, the device would return an error. Hence the device will return an error, no matter if the
telegram is too short or too long, because the checksum is wrong. For message examples see „3.2.11. Examples
of ModBus RTU messages“.

The bytes in a ModBus message are read from left to right (big endian format), except for the
16 bit ModBus RTU checksum where low byte and high byte are switched.

Page 12EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
WRITE Single Register

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data word CRC
0x01 0x06 0...65535 Value to write Checksum ModBus-CRC16 (1

WRITE Multiple Registers

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Byte 6 Bytes 7-253 Last 2 Bytes
ID FC Start reg. Number Count Data bytes CRC
0x01 0x10 0...65535 0...123 Number*2 Data Checksum ModBus-CRC16 (1

WRITE Single Coil

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7
ID FC Register Data word CRC
0x01 0x05 0...65535 0x0000 (FALSE) or 0xFF00 (TRUE) Checksum ModBus-CRC16 (1

3.2.7 Query message
When	querying	something	from	the	device,	the	response	is	expected	to	be	immediate	and	will	be	of	varying	length,	
but	always	of	the	same	construction.	For	the	query,	the	start	register	and	the	number	of	registers	or	coils	to	read	
are	required.	The	base	of	the	ModBus	data	format	is	a	register,	a	16	bit	integer	value	or	a	group	of	two	bytes.	
Thus,	when	querying	one	register	with	function	READ	HOLDING	REGISTERS,	the	device	will	return	two	bytes	
and	when	querying	two	registers	it	returns	4	bytes	etc.	With	READ	COILS,	the	response	will	be	one	byte	(=1	coil)	
or	two	bytes	(=16	coils,	former	response	in	earlier	firmwares).
For message examples see „3.2.11. Examples of ModBus RTU messages“.

READ HOLDING REGISTERS

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Number CRC
0x01 0x03 0...65535 Number of regs to read (1...125) Checksum ModBus-CRC16 (1

READ COILS

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Number CRC
0x01 0x01 0...65535 Must always be 1 Checksum ModBus-CRC16 (1

3.2.8 Response message (read)
A	response	from	the	device	is	usually	expected	after	a	query	or	if	something	has	been	set	and	the	device	confirms	
the execution.
Expected response for WRITE SINGLE REGISTER:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data CRC
0x01 0x06 0...65535 Written value echoed Checksum ModBus-CRC16 (1

Expected response for WRITE SINGLE COIL:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data CRC
0x01 0x05 0...65535 Written value echoed Checksum ModBus-CRC16 (1

(1 See „3.2.9. The ModBus checksum“

Page 13EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
Expected response for WRITE MULTIPLE REGISTERS:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data CRC
0x01 0x10 0...65535 Number of written registers Checksum ModBus-CRC16 (1

Expected response for READ HOLDING REGISTERS:

Byte 0 Byte 1 Byte 2 Bytes 3-253 Last 2 Bytes
ID FC Data length in bytes Data CRC
0x01 0x03 2...250 Queried registers content Checksum ModBus-CRC16 (1

Expected response for READ COILS:

Byte 0 Byte 1 Byte 2 Byte 3 Last 2 Bytes
Head FC Data length in bytes Data CRC
0x01 0x01 1 0x00 or 0x01 Checksum ModBus-CRC16 (1

Unexpected response (communication error):

Byte 0 Byte 1 Byte 2 Last 2 Bytes
Head FC CRC
0x01 0x80 + Function code Error code Checksum ModBus-CRC16 (1

3.2.9 The ModBus checksum
The checksum at the end of ModBus RTU messages is a 16 bit checksum, but it isn’t calculated as the usual
CRC16 checksum. Furthermore, the byte order of the checksum in the message is reversed. Information about
ModBus CRC16 and source code for implementation and calculation are available on the Internet, for example here:
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf	,	section	2.5.1.2.

3.2.10 Communication errors
Communication errors are only related to digital communication with the device. Other alarms or errors of any kind
which can be generated and indicated by the device must not be mixed up with these.
The device will return unexpected error messages in case the previously sent message is in wrong format or if the
function can not be executed by some reason. For example, when trying to write a set value with WRITE SINGLE
REGISTER while the device isn’t in remote control. Then the message won’t be accepted and the device will return
an	error	message	instead	of	a	confirmation	message.	The	message	format	itself	can	be	wrong	if	the	checksum	is	
bad or if you try to read a bit with function READ HOLDING REGISTERS instead of READ COILS.
In case of an error, the response message contains the original function code added to 0x80, in order to identify
the response as error message.
Overview of function codes in error messages:

FC error Belongs to
0x81 READ COILS
0x83 READ HOLDING REGISTERS
0x85 WRITE SINGLE COIL
0x86 WRITE SINGLE REGISTER
0x90 WRITE MULTIPLE REGISTERS

Overview of the communication error codes which can be returned by the device:

Code Error Explanation
0x01 1 Wrong function code The function code in the 2nd byte of the ModBus message isn't sup-

ported. See „3.2.5. Functions“ for supported codes. The error also
occurs when trying to read or write a register with a function code for
which	the	register	isn't	defined.

(1 See „3.2.9. The ModBus checksum“

Page 14EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

Code Error Explanation
0x02 2 Invalid address The register address you were trying to access with read or write isn't

defined	for	your	device.	Every	device	series	may	have	a	different	num-
ber of registers. Refer to the separate ModBus register list of the series
your device belongs to.

0x03 3 Wrong data or data length The length of data in the message is wrong or the data itself. For ex-
ample,	a	set	value	always	requires	two	bytes	of	data.	If	the	data	part	
of the message would be one byte only or three bytes, then the data
length would be wrong. Otherwise, when sending a set value of, for
example,	0xE000	to	a	register	for	which	the	maximum	value	is	defined	
as 0xCCCC, this would be wrong data.

0x04 4 Execution Command could not be executed, depends on the situation
0x05 5 CRC The CRC16 checksum at the end of the ModBus RTU message is wrong

or	has	been	transmitted	in	wrong	byte	order	(high	byte	first	instead	of	
low byte)

0x07 7 Access denied Access to a certain register isn't allowed or read only while trying to
write, or vice versa. The error also occurs when trying to write to a writ-
able address while the device isn't in remote control or in remote control
from	a	different	interface

0x17 23 Device in local Indicates, that write access to the device is blocked by he "local" condi-
tion, so only read access is possible. "Local" means that remote control
isn't allowed.

An example: You attempted to switch the device to remote control in order to control it from PC, but instead of
an echo of your message it returns something like this: 01 85 07 03 52. This is an error message. The position of
the	function	code	contains	the	value	0x85.	According	to	the	first	table	above,	this	is	related	to	the	function	WRITE	
SINGLE COIL. The error code in the message is 0x07 which means, according to the second table above, the
device	has	denied	the	access.	This	can	have	different	reasons,	for	example	that	the	device	is	already	in	remote	
control	via	a	different	interface.

3.2.11 Examples of ModBus RTU messages
3.2.11.1 Writing a set value

Set values are adjustable control value for the regulation of the physical values current and
voltage. The can only be written to a device, if it has been switched to remote control before.

Example: You want to set the current to 50%. According to the register lists, the „Set current value” is at address
501 (0x1F5) and assigned function is WRITE SINGLE REGISTER. Expecting the device to already be in remote
control mode, the message to build then has to be like this:

Message
to send:

ID FC Start Data CRC
► Expected

response:
ID FC Start Data CRC

0x01 0x06 0x01F5 0x6666 0x338E 0x01 0x06 0x01F5 0x6666 0x338E

In this case, the device is expected to return an echo of your message, indicating successful execution of the
command. The display of the device should now show 50% of what’s the maximum current of your device. For
a power supply or electronic load with 10 A nominal current it should show 5.00 A or for a model with 5 A current
rating it should show 85.00 A.

3.2.11.2 Query all actual values at once
The	device	holds	three	readable	actual	values	of	voltage,	current	and	power.	These	actual	values	can	be	queried	
separately	or	all	at	once.	The	advantage	of	a	combined	query	is,	that	you	gain	a	snapshot	of	the	most	recent	actual	
values	of	the	DC	input	or	output.	When	querying	separately,	values	may	have	changed	already	when	sending	the	
next	query.
According to the register list, the actual values start from register 507. Three registers shall be read:

Message
to send:

ID FC Start Data CRC
►

0x01 0x03 0x01FB 0x0003 0x75C6

Possible
response:

Head FC Len Data CRC
0x01 0x03 0x06 0x2620 0x0C9B 0x091B 0x9350

Page 15EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.2.11.3 Read the nominal voltage of a device
The nominal or rated voltage, like the other nominal values of current or power, is an important value to read from
a device. They’re all referenced for translating set values and actual values. It’s recommended to read them from
the device right after opening the digital communication line, unless the software shall not be universal.
According	to	the	register	list,	the	nominal	voltage	is	a	4-byte	float	value	in	register	121.

Query
message:

ID FC Start No. CRC
► Possible

response:
ID FC Len Data CRC

0x01 0x03 0x0079 0x0002 0x15D2 0x01 0x03 0x04 0x42A00000 0xEE69

Also see 3.2.8.	The	response	contains	a	float	value	according	to	IEEE754	format,	which	translates	to	80.0.

3.2.11.4 Read device status
All device report their device status in register 505.

Query
message:

ID FC Start No. CRC
► Possible

response:
ID FC Len Data CRC

0x01 0x03 0x01F9 0x0002 0x15C6 0x01 0x03 0x04 0x00000483 0xB952

Also see 3.2.8. The response contains the value 0x483 which states that the device is in remote control via the
USB port, that the DC output is switched on and that CC (constant current) mode is active.

3.2.11.5 Switch to remote control or back to manual control
Before	you	can	control	a	device	from	remote,	it’s	required	to	switch	it	to	remote	control.	This	is	done	by	sending	
a certain command.

The device will never switch to remote control automatically and can not be remote controlled
with being in this condition. Reading from all readable registers is always possible.

The device will never exit remote control automatically, unless it's switched off or the AC sup-
ply is otherwise interrupted. Remote control can be left by a certain command. It then switches
back to manual control.

Switching to remote control may be inhibited by at least one circumstance and is usually indicated by an error
message:
•	Condition „Lock“ is active (check the display on the front of your device or read the device status), which can

mean that the display belonging to the addressed output is currently in menu mode

 ► How to switch a device to remote control:
1. Create and send a message according to the description above, for example 01 05 01 92 FF 00 2C 2B for

output 1.
2. Once the switchover to remote control has been successful, the device will usually indicate the new condi-

tion in the display, as well as it echoes the message as a confirmation.
In case switching to remote control would be denied by the device, because option “Allow remote control = No” is
set	(example	from	ELR	9000	series,	other	series	may	differ),	then	the	device	will	return	an	error	message	like	01	
85	17	02	9E.	According	to	ModBus	specification,	this	is	error	0x85	with	error	code	0x17.
Leaving remote control can be done in two ways: using the dedicated command or by switching the device to “Lo-
cal”	condition.	We	will	consider	the	first	option,	because	this	is	about	programming.

 ► How to exit remote control:
1. Create and send a message according to the description above, for example 01 05 01 92 00 00 6D DB for

output 1.

Page 16EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.3 SCPI
SCPI is an international standard for a clear text based command language. Details about the standard itself can
be found on the internet.

3.3.1 Format of set values and actual values
In the SCPI command language real values are used, with or without unit. It means, if you wanted to set a current
of 17.5 A you would use the simple command CURR˽17.5 or, with unit, CURR˽17.5A.	Below	you	will	find	more	
detailed	information	about	the	available	commands	and	their	syntax.	The	space,	as	required	to	be	put	between	
the	command	and	a	parameter	is	below	replaced	by	symbol	“˽“.

3.3.2 Syntax
Specification	according	to	„1999	SCPI	Command	reference”.	Following	syntax	formats	can	occur	in	commands	
and/or responses:

Values This numeric value corresponds to the value in the display of the device and depends on the
nominal values of the device. Rules:
- The value must be sent after the command and separated by a space
- Instead of a numeric value you can also use:
MIN corresponds to the minimum value of the parameter
MAX corresponds to the maximum value of the parameter:

MAX for a set value like U or I = adjustment limit (e. g. U-max)
MAX for a protection (OVP, OCP) = 110% of the rated value

<NR1> Numeric values without decimal place
<NR2> Numeric	values	with	decimal	place	(floating	point),	includes	NR1
<NRf> <NR1> or <NR2> or <NR3>
Unit V (Volt), A (Ampere), W (Watt)
<CHAR> 0..255: Decimal value
<+INT> 0..32768: Positive integer value (output from device)
<B0> 1 or ON: Function is/will be activated

0 or OFF: Function is/will be deactivated
<B1> NONE: manual operation active, switching to remote control possible

REMote: device is in remote control
<ERR> Error with number and description
<SRD> String data, various formats
; The semicolon is used separate multiple commands within one message
: The colon separates the SCPI keywords (main system, subsystems)
[] Lowercase	letters	and	the	content	of	square	brackets	are	optional
? The	question	mark	identifies	a	message	as	query.	A	query	can	be	combined	with	a	control	mes-

sage	(command	concatenation).	Note,	 that	 it's	required	to	wait	 for	 the	response	of	 the	query	
before the next control message can be sent.

-> Response from device

3.3.3 Concatenated commands
It’s possible to couple, i.e. concatenate up to 5 commands in one message. The commands must then be sepa-
rated by a semicolon (;). Example:
VOLT 20;CURR 10;MEAS:ARR?
The command in the string are processed from left to right, so the order of commands is important to achieve cor-
rect	results.	When	querying	multiple	values	or	parameters	at	once,	the	returned	string	is	also	in	coupled	format,	
with	the	queried	returns	separated	by	semicolons.

3.3.4 Upper and lower case
SCPI uses upper case commands by default, though the device also accept lower case form.

3.3.5 Long form and short form
SCPI commands have a long form and a short form. The short form (eg. SOUR) and the long form (eg. SOURCE)

Page 17EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
can be used arbitrarily. To distinguish both forms, the commands as described in the following sections are written
partly in upper case (indicates short form), partly in lower case letters (indicates the additional part of the long form).

3.3.6 Termination character
Some	interfaces	require	to	attach	a	termination	character	to	the	message,	while	others	don’t,	such	as	USB.	There	
the termination character is optional and used in order to maintain compatibility between several different interfaces
in control softwares which use SCPI.
Supported termination character(s): 0xA (LF, line feed)

3.3.7 Communication errors
Errors in terms of SCPI are only communication errors. According to the standard, devices using SCPI don’t return
errors	immediately.	They	have	to	be	queried	from	the	device.	The	query	can	occur	directly	with	the	error	command	
(see 3.3.17)	or	by	first	reading	the	signal	bit	“err”	from	the	Status	Byte	register	(see	„3.3.9. Status registers“).
The	error	format	is	defined	by	the	standard	and	is	made	of	a	string	containing	a	number	(the	actual	error	code)	
and an explanatory text. Following errors strings can be generated by the device:

Error code / error text Description
0,”No error” No error
-100,”Command error” Command unknown or incomplete
-102,”Syntax error” Command syntax wrong -> example: SYST:LOKC (partially correct)
-108,”Parameter not allowed” A command was sent with a parameter though the command doesn’t use pa-

rameters
-200,”Execution error” Command could not be executed
-220,”Parameter error” Wrong parameter used
-221,”Settings	conflict” Command could not be executed because of the condition of the device (being

in MENU etc.)
-222,”Data out of range” Parameter could not be set because it exceeded a limit
-223,”Too much data” Too many parameters per command or too many commands at once
-224,”Illegal parameter value” A	parameter	not	specified	for	the	command	has	been	sent
-225,”Out of memory” The expected answer could not be sent because it would exceed the internal

buffer	(can	only	occur	with	5x	*IDN?	in	one	query	message)

3.3.8 Standard IEEE commands
In relation to the old interface standards GPIB and IEEE 488, some of the standard commands have been imple-
mented. They are supported in all devices which feature SCPI command language.

3.3.8.1 *CLS
Clears	the	error	queue	and	the	status	byte	(STB).

3.3.8.2 *IDN?
Returns	the	device	identification	string,	which	contains	following	information,	separated	by	commas:
1. Manufacturer
2. Model name
3. Serial number
4. Firmware version(s) (in case there are several, these are separated by a space)
5.	User	text	(arbitrary	user-definable	text,	as	definable	with	SYST:CONFIG:USER:TEXT)

3.3.8.3 *RST
When	sent,	this	will	set	the	device	to	a	defined	state,	except	remote	control	is	denied	by	the	device:
1. Switch to remote control (same as SYST:LOCK 1)
2.	Set	DC	input/output	to	off
3.	Clear	alarm	buffer
4. Clear status registers to default condition (QUEStionable Event, OPERation Event, STB)

3.3.8.4 *STB?
Reads the STatus Byte register. The signal run of the various device conditions and events is illustrated in the
register model below. The STB bits in particular:
Bit 2: err,	Error	Queue	-->	one	or	several	error	in	the	error	buffer.	By	reading	the	error	buffer	or	sending	*CLS	it’s	

Page 18EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
flushed	and	the	bit	err is reset

Bit 3: ques, Questionable Status Register is active (one or several events have occurred)
Bit 5: esr, the Event Status Register (ESR) is active
Bit 6: not used
Bit 7: oper, Operation Status Register is active (one or several events have occurred)

3.3.9 Status registers
Not all device conditions and alarms can be read with dedicated SCPI commands. As an alternative, the remaining
device-related information are grouped in status registers. Using regular polling, the status byte (STB) can be a
starting point for reading the device status. It tells what status register has recorded at least one event. Apart from
that, the other status registers could also be polled directly. The difference then would be, that the user would have
to find out which bits in the register have changed, by comparing the most recent value with an older value. The
bits in the status byte register will do that job for you. If they remain 0, nothing has happened.
Once a bit in the STB signalizes, that there was an event recorded in QUES or OPER register, you could read the
corresponding event register of OPER and QUES, in order to find out which bits have changed in the COND register.
Register model:

Questionable Status
QUES

err

oper

ques

STATUS
STB

0
0

0/1
0/1
0

0/1
0

0/1

0

1

7

6

5

4

3

2

Error 1
...

Error 5

Error Queue

<>0

OR

0

1

7

6

5

4

3

2

8

9

10

11

12

OR

Operation Status
OPER

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

0

1

7

6

5

4

3

2

8

9

10

11

OVP (Output 1)
OCP (Output 1)
OPP (Output 1)

OT (Output 1)
OVP (Output 2)
OCP (Output 2)
OPP (Output 2)

OT (Output 2)
CV (Output 1)
CC (Output 1)
CV (Output 2)
CC (Output 2)

Remote (Output 1)

Output on (Output 1)
Tracking (only Triple)

Remote (Output 2)
Output on (Output 2)

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

CONDITION
U = User defineable
D = Is 1 by default

ENABLE EVENT ENABLE

0
0
0
0
0
0
0
0

0/1
0/1
0/1
0/1

0
0
0
0
0
0
0
0

U/D
U/D
U/D
U/D

EVENT

STAT:QUES:COND? STAT:QUES:EVEN?
STAT:QUES:ENAB <n>
STAT:QUES:ENAB?

CONDITION

STAT:OPER:COND?
STAT:OPER:ENAB <n>
STAT:OPER:ENAB?

STAT:OPER:EVEN?

*STB?

U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D

0
0

U/D
U/D
U/D

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0
0

0/1
0/1
0/1

13 0/1 U/D 0/1
14 0/1 U/D 0/1

0/1 U/D 0/1 12

OR

U/D
0

U/D
U/D
U/D
U/D

0
0

esr

Event Status
ESR

0

1

7

6

5

4

3

2

OPC

QYE
DDE
EXE

CME

OPC = OPeration Complete bit
EXE= EXecution Error
QYE= QuerY Error
CME= CoMmand Errors
DDE= Device Depend Error

*ESE
*ESE?

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

*ESR?

Events recorded in the event registers STAT:QUES:EVENT and STAT:OPER:EVENT only record
PTRs (positive transition), i. e. the changeover from 0 to 1.

Device alarms like OVP are signaled in the subregisters CONDITION and EVENT. The have
to be cleared separately by using either SYST:ERR? or SYST:ERR:ALL?, which is considered
as alarm acknowledgement and will clear the corresponding bit in CONDITION, but only if the
alarm condition isn't present anymore.

Command Description
STATus:QUEStionable?
STATus:QUEStionable:CONDition?

Reads the inputs of the Questionable Status register and returns a
value representing the bit signals on CONDITION.

STATus:QUEStionable:EVENt? Reads the Event sub register of the Questionable Status register
and returns a value representing the bit status.

Page 19EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

Command Description
STATus:QUEStionable:ENABle˽<NR1>
STATus:QUEStionable:ENABle?

Sets	a	filter/mask	for	CONDITION	before	it’s	passed	on	to	the	Event	
sub register of the Questionable Status register or reads the current
mask.	This	filter	can	be	used	to	suppress	events	of	particular	sig-
nals. By default, all bits are enabled for which a signal is given (see
register scheme). The value NR1 must not be higher than the sum
of all active signal bits.

STATus:OPERation?
STATus:OPERation:CONDition?

Reads the inputs of the Operation Status register and returns a value
representing the bit signals on CONDITION.

STATus:OPERation:EVENt? Reads the Event subregister of the Operation Status register and
returns a value representing the bit status.

STATus:OPERation:ENABle˽<NR1>
STATus:OPERation:ENABle?

Sets	a	filter/mask	for	CONDITION	before	it’s	passed	on	to	the	Event	
sub register of the Operation Status register or reads the current
mask.	This	filter	can	be	used	to	suppress	events	of	particular	sig-
nals. By default, all bits are enabled for which a signal is given (see
register scheme). The value NR1 must not be higher than the sum
of all active signal bits.

3.3.10 Output addressing
The	so-called	Single	models	only	have	one	output,	so	addressing	isn’t	required	there.	The	Triple	models,	however,	
have to separately accessible and controllable outputs, so addressing becomes necessary. With SCPI this is done
with	a	suffix	added	to	the	actual	command	for	either	set	or	query	commands.	Following	rules	apply:
•	The	suffix	@1	is	dedicated	to	Output	1	(featured	with	Single	and	Triple	models)
•	The	suffix	@2	is	dedicated	to	Output	2	(only	featured	with	Triple	models)
•	Using	@1	with	a	Single	model	isn’t	required,	but	supported
•	With	Triple	models	it’s	possible	to	omit	the	suffix	when	addressing	Output	1.	Without	any	suffix	the	command	

would always directed to Output 1
•	With Triple models it’s possible to address both outputs at once, to achieve a synchronous setting of values or
query	of	actual	values

Format of output addressing for set commands using an example:
CURR 12,˽(@1,2) addresses outputs 1 and 2 of a Triple model and sets 12 A. This command wouldn’t be executed
with a Single model and cause an error, because a Single model has no Output 2 to address. The command and
the	space	after	the	command	are	required.	Alternative	forms: CURR 12,˽(@1-2) or CURR 12,˽(@1:2)

Format	of	output	addressing	for	query	commands	using	an	example:
MEAS:ARR?˽(@2)	addresses	Output	2	of	a	Triple	model	to	query	the	actual	values.	The	space	after	the	actual	
command,	which	ends	with	the	question	mark,	is	mandatory.	Extended	to	query	both	outputs	the	command	would	
be MEAS:ARR?˽(@1,2)	and	would	return	the	actual	values	of	both	outputs	at	once	as	comma	separated	grouped	
string,	such	as	19.80	V,	3.25	A,	64.4	W,0.00	V,	0.00	A,	0.0	W	in	which	the	first	group	belongs	to	Output	1	etc.	The	
values	indicate	that	output	2	is	either	set	to	0	V	or	switched	off.

Page 20EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.3.11 Set value commands

All values which have dedicated commands are always by adjustment limits, as definable in
the setup menu or by additional commands in remote control.

Also in remote control it applies that setting a voltage or current set value will impact the other
one so the maximum power won’t be exceeded. If you wanted, for instance, to define the current
at the desired level as given by the CURR command, you would have to set the voltage first. The
resulting opposite set value can only be determined by reading it back with CURR? or VOLT?.

Command Description
[SOURce:]VOLTage˽<NRf>[Unit]
[SOURce:]VOLTage?

Writes or reads the voltage set value. The unit is optional when writ-
ing.	When	querying	the	value	it	always	comes	with	unit.	Examples:
VOLT˽10	->	absolute	short	form,	set	10	V
SOURCE:VOLTAGE˽5.35V	->	absolute	long	form,	sets	5.35	V

[SOURce:]CURRent˽<NRf>[Unit]
[SOURce:]CURRent?

Writes or reads the set value of current. The unit is optional when
writing.	When	querying	the	value	it	always	comes	with	unit.	Examples:
CURR˽8	->	absolute	short	form,	set	8	A
SOURCE:CURRENT˽18.7A	->	absolute	long	form,	sets	18.7	A

3.3.12 Measuring commands
Measuring	commands	return	the	last	actual	values	which	have	been	acquired	by	the	device	by	either	measurement	
(U,	I)	or	calculation	(P).	These	represent	the	last	situation	on	the	(addressed)	DC	output.	Actual	values	are	acquired	
asynchronously	to	the	measuring	commands.	It	means,	the	values	are	not	measured	in	the	moment	of	query.
Actual	values	are	not	necessarily	identical	to	the	corresponding	set	values.	The	device	acquires	the	actual	values	
periodically.

Command Description
MEASure:[SCALar:]VOLTage[:DC]? Reads	the	last	acquired	actual	value	of	DC	output	voltage,	which	is	

immediately returned. Example: 3.45V
MEASure:[SCALar:]CURRent[:DC]? Reads	the	last	acquired	actual	value	of	DC	output	current,	which	is	

immediately returned. Example: 10.12A
MEASure:[SCALar:]POWer[:DC]? Reads	the	last	acquired	actual	value	of	DC	output	power,	which	is	

immediately returned. Example: 34.9W
MEASure:[SCALar:]ARRay? Reads all three actual values of the DC output and returns them in a

combined form in the order U, I, P. Example: 3.45V, 10.12A, 34.9W

3.3.13 Status commands
Status commands are used to alter the status of the device in terms of activating remote control or switching the
DC	output,	or	to	query	the	current	status.

Command Description
SYSTem:LOCK˽<B0> Activates remote control with ON, if permissible for the current

situation of the device, or leaves it with OFF. The state of remote
control	can	be	queried	anytime,	before	or	after	this	command,	with	
SYST:LOCK:OWN?

SYSTem:LOCK:OWNer? Queries the state of remote control. Following possible returns:
REMOTE = Remote control is active for (addressed) output
NONE = Remote control isn’t active for (addressed) output

OUTPut˽<B0>
OUTPut?

Switches the (addressed) DC output ON, if the (addressed) output is
already in remote control, or switches it OFF.	The	query	form	would		
return	the	actual	output	status,	same	as	it	can	be	queried	via	bit	11	
and 14 or the Questionable Status register.

SYSTem:ERRor?
SYSTem:ERRor:NEXT?

Queries	the	last	error	from	the	error	queue.	This	would	then	be	de-
leted	from	the	queue	so	that	possible	further	errors	will	shift	to	the	top.	
Repeating	the	command	would	query	all	errors	in	the	queue	one	by	
one	until	the	buffer	is	empty.	Return	example:	-223,“Too much data“

Page 21EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

Command Description
SYSTem:ERRor:ALL? Queries	all	error	which	are	currently	in	the	queue	and	returns	them	in	

a	combined	string	in	which	the	last	error	comes	first.	Return	example:
-221,“Settings conflict;@1“, -100,“Command error“, -223,“Too
much data“
The	use	of	@1	in	the	first	error	points	to	a	conflict	which	occurred	
when trying to set something for Output 1 while it wasn’t in remote
control

3.3.14 Commands for protective features
The devices of series PS 2000 B feature a set of device alarms with adjustable thresholds (OVP, OCP) which
serve to protect connected loads. The same thresholds can also be manually adjusted on the control (HMI) of the
devices. Other alarms like OT have no adjustable parameter.

Command Description
[SOURce:]VOLTage:PROTection[:LEVel]˽<NRf>[Unit] Defines	 the	 so-called	OVP	 threshold	 for	 the	 (ad-

dressed) output. Example:
VOLT:PROT 46 -> absolute short form, set the
threshold to 46 V, which also suits for a 42 V model.

[SOURce:]CURRent:PROTection[:LEVel]˽<NRf>[Unit] Defines	 the	 so-called	OCP	 threshold	 for	 the	 (ad-
dressed) output. Example:
CURR:PROT 11 -> absolute short form, set the
threshold to 11 A, which would only suit for models
rated 10 A or higher.

3.3.15 Commands for adjustment limits
Adjustment	limits	are	additional,	globally	effective	adjustable	limits	for	the	set	values	U	and	I.	The	purpose	is	to	
narrow the default 0...100% adjustment range and to prevent, for example, to accidently set a too high voltage for
the load. There is also the overvoltage protection (OVP), but it’s generally better to prevent irregular set values in
the	first	place.	
In case a set value is sent to the device that would exceed an adjustment limit, the device will ignore the value and
put	an	error	into	the	error	queue.	At	the	same	time	it’s	impossible	to	set	the	adjustment	limit	lower	than	the	related	
set value. These commands are connected to the “Limits” settings as you can adjust them in the setup menu of
the device. Also refer to the device manuals for details.

Command Description
[SOURce:]VOLTage:LIMit:HIGH[?]˽<NRf>[Unit] Defines	the	upper	limit	of	the	voltage	set	value	adjust-

ment range. This is only executed if the limit value
is	equal	to	or	higher	than	the	set	value.	Example:
VOLT:LIM:HIGH 30 -> absolute short form, sets the
adjustment limit to 30 V, but only if the actual set
value	is	30	V	or	lower.	This	could	be	verified	before	
with the VOLT? command.

[SOURce:]CURRent:LIMit:HIGH[?]˽<NRf>[Unit] Defines	the	upper	limit	of	the	adjustment	range	for	
the set value of current. This is only executed if the
limit	value	is	equal	to	or	higher	than	the	set	value.	
Example:
CURR:LIM:HIGH 6 -> absolute short form, sets the
adjustment limit to 6 A, but only if the set value is
6	A	or	lower.	This	could	be	verified	before	with	the	
CURR? command.

Page 22EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.3.16 Commands for the tracking mode
The so-called tracking mode is only available with the Triple models. When activated, it couples the two address-
able	outputs	so	that	Output	2	follows	Output	1	in	all	regards	of	set	values,	limits,	protection	and	DC	on/off.	Once	
tracking has been activated, Output 2 isn’t available anymore for separate addressing. The status of tracking mode
is indicated in the displays by “Tracking”. This mode is furthermore stored permanently.

Command Description
SYSTem:CONFig:TRACking˽{ON | OFF}
SYSTem:CONFig:TRACking?

Activates tracking mode with ON or deactivates it with OFF or reads
the current status. This status is the actual mode status as also
signaled in the Questionable status register.

3.3.17 Further commands
Here	are	commands	listed	that	can	be	used	to	query	other	information	from	the	device.

Command Description
SYSTem:NOMinal:VOLTage? Reads the rated output voltage of device, respectively of the ad-

dressed output
SYSTem:NOMinal:CURRent? Reads the rated output current of the addressed output

SYSTem:NOMinal:POWer? Reads the rated output power of the addressed output

SYSTem:DEVice:CLASs? Reads the device class number, which can be used to distinguish
between	different	series	and	sub	series.	For	Single	models	of	this	
series this number would always be 16, while it’s 24 for the Triple
models.

EA Elektro-Automatik GmbH & Co. KG
Development - Production - Sales

Helmholtzstraße 31-33
41747 Viersen

Germany

Fon: 02162 / 37 85-0
Fax: 02162 / 16 230

Mail: ea1974@elektroautomatik.de
Web: www.elektroautomatik.de

	1.	Preamble
	1.1	Introduction
	1.2	Driver installation
	1.2.1	Windows
	1.2.2	Linux, MacOS and others

	1.3	Terms

	2.	Communication with the device in general
	2.1	Structure of the communication
	2.2	Serial communication parameters
	2.3	Translating values
	2.3.1	Actual values
	2.3.2	Set values

	2.4	General
	2.5	Effective resolution when programming

	3.	Message formats
	3.1	Custom binary format
	3.1.1	Telegram structure
	3.1.2	The start delimiter in detail
	3.1.3	The mask byte on object 54
	3.1.4	Message examples
	3.1.5	Possible problems when setting device conditions
	3.1.6	Error messages
	3.1.7	Trouble-shooting
	3.1.8	Object list

	3.2	ModBus RTU
	3.2.1	Preamble
	3.2.2	General information about ModBus RTU
	3.2.3	About the register list
	3.2.4	Message types
	3.2.5	Functions
	3.2.6	Control messages (write)
	3.2.7	Query message
	3.2.8	Response message (read)
	3.2.9	The ModBus checksum
	3.2.10	Communication errors
	3.2.11	Examples of ModBus RTU messages

	3.3	SCPI
	3.3.1	Format of set values and actual values
	3.3.2	Syntax
	3.3.3	Concatenated commands
	3.3.4	Upper and lower case
	3.3.5	Long form and short form
	3.3.6	Termination character
	3.3.7	Communication errors
	3.3.8	Standard IEEE commands
	3.3.9	Status registers
	3.3.10	Output addressing
	3.3.11	Set value commands
	3.3.12	Measuring commands
	3.3.13	Status commands
	3.3.14	Commands for protective features
	3.3.15	Commands for adjustment limits
	3.3.16	Commands for the tracking mode
	3.3.17	Further commands

